MOFs capture smokestack CO2


Friday, 20 December, 2019

MOFs capture smokestack CO2

An international team of researchers has uncovered an effective method for scrubbing carbon dioxide from smokestack emissions. Published in Nature, the study used data mining to address the water portion of smokestack gases, which complicates the removal of CO2.

Oregon State University chemistry researcher Kyriakos Stylianou and colleagues from the École Polytechnique fédérale de Lausanne, Heriot-Watt University in Scotland, the University of Ottawa, Canada, and the University of Granada in Spain investigated hundreds of thousands of nanomaterials known as metal organic frameworks (MOFs). Via adsorption, MOFs hold the potential to intercept CO2 molecules as the flue gases make their way out of the smokestack.

Flue gases can be dried, but that adds significant expense to the CO2 capture process.

“There are a countless number of structurally and chemically distinct MOFs, but the challenge with most of them is that they do not perform well when subjected to testing with realistic flue gases,” Stylianou said.

“The water in flue gases competes with the CO2 for the same adsorption sites, which means those MOFs are not scrubbing selectively like we want them to.”

The researchers sifted through more than 325,000 MOFs in a digital library, identifying different types of CO2 binding sites — which they dubbed ‘adsorbaphores’ — that would maintain their selectivity in the presence of water.

In the lab, doctoral student Arunraj Chidambaram made two of the MOFs that contained a hydrophobic (water-repelling) adsorbaphore, consisting of two aromatic cores, and tested them. Not only was the separation performance of the MOFs unaffected by water, they also outperformed some of the CO2 removal materials currently on the market such as activated carbon and zeolite 13X.

“We went from design to synthesis and application,” Stylianou said.

“We used computations to discover active sites for CO2 capture. The MOFs performed optimally for wet flue CO2 capture because these MOFs have two distinct sites in their structures — one for water and one for CO2, and therefore, CO2 and water molecules do not compete with each other.”

Further research will investigate scaling up to the challenge of industrial CO2 emissions.

Image courtesy of Oregon State University.

Related News

Experts warn against health risks of plastic pollution

The World Health Organization estimates that around one-quarter of all deaths are...

City of Gosnells develops tree production nursery

The production nursery is set to produce 9500 trees for the City of Gosnells area and more than...

Quantum battery tests prove extended storage life

Researchers have found a method to extend the lifetime of quantum batteries — 1000 times...


  • All content Copyright © 2025 Westwick-Farrow Pty Ltd